Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38543350

RESUMO

The peculiarities of crystal growth on a Nafion polymeric substrate from supersaturated aqueous solutions of initial substances were studied. The solutions were prepared based on deionized natural water and deuterium-depleted water. As was found earlier, in natural water (deuterium content 157 ± 1 ppm) polymer fibers are capable of unwinding towards the bulk of the liquid, while in deuterium-depleted water (deuterium content ≤ 3 ppm) there is no such effect. Since the distance between the unwound fibers falls in a nanometer range (which is close to the size of the unit cell of the crystal lattice), and these fibers are directed normally to the polymeric substrate, the unwinding can affect crystal growth on the polymer substrate. As was obtained in experiments with X-ray diffractometry, the unwound polymer fibers predetermine syngony of crystals, for which the unit cell is either a rectangular parallelepiped (monoclinic system) or an oblique parallelepiped (triclinic system). A quantitative theoretical model that describes the local interaction of the polymer substrate with the crystalline complexes is presented. Within this model, the polymer substrate can be considered as a flexible matrix for growing crystals.

2.
Materials (Basel) ; 16(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444935

RESUMO

Photoluminescence from the surface of Nafion polymer membrane upon swelling in water under irradiation by electromagnetic waves at a frequency of 100 MHz was studied. In these experiments, natural deionized (DI) water with a deuterium content of 157 ppm and deuterium-depleted water (DDW, deuterium content is 1 ppm) were explored. We have studied for the first time the effect of linearly and randomly polarized low-frequency electromagnetic radiation on the luminescence excitation. To obtain low-frequency electromagnetic radiation with random polarizations, anisotropic solid submicron-sized particles, which result in depolarization effects upon scattering of the initially linearly polarized radiation, were used. We compared two types of colloidal particles: spherically symmetric (isotropic) and elongated (anisotropic). If the radiation is linearly polarized, the intensity of luminescence from the Nafion surface decreases exponentially as the polymer is soaked, and such a behavior is observed both in natural DI water and DDW. When spherically symmetric submicron-sized particles are added to a liquid sample, the luminescence intensity also decreases exponentially upon swelling in both natural DI water and DDW. At the same time, when anisotropic submicron-sized particles are added to DI water, random jumps in the luminescence intensity appear during swelling. At the same time, the exponential decrease in the luminescence intensity is retained upon swelling in DDW. A qualitative theoretical model for the occurrence of random jumps in the luminescence intensity is presented.

3.
Polymers (Basel) ; 15(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177360

RESUMO

The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended "brush" type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate.

4.
Polymers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36235955

RESUMO

As was found in our previous works, when Nafion swells in water, polymer fibers unwind into the bulk of the surrounding liquid. This effect is controlled by the content of deuterium in water. Here, we present the results of studying the dynamics of methylene blue (MB) adsorption on the Nafion surface for MB solutions based on natural water (deuterium content is 157 ppm, the unwinding effect occurs) and based on deuterium-depleted water (DDW; deuterium content is 3 ppm, there is no unwinding). In addition, we studied the dynamics of water desorption during drying of the Nafion polymer membrane after soaking in MB solution based on natural water and DDW. It turned out that in the case of natural water, the rate of MB adsorption and water desorption is higher than in the case of DDW. It also turned out that the amount of MB adsorbed on the membrane in the case of natural water is greater than in the case of DDW. Finally, it was found that the desorption of water during drying is accompanied by a rearrangement of the absorption spectrum of Nafion. This rearrangement occurs earlier in the case of DDW. Thus, by infinitesimal changes in the deuterium content (from 3 to 157 ppm) in an aqueous solution, in which a polymer membrane swells, we can control the dynamics of adsorption and desorption processes. A qualitative model, which connects the observed effects with the slowing down of diffusion processes inside the layer of unwound fibers, is proposed.

5.
Polymers (Basel) ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808587

RESUMO

The temporal dynamics of luminescence from the surface of Nafion polymer membranes have been studied. In fact, the polymer membrane was soaked in liquids with different contents of deuterium. The test liquids were ordinary (natural) water (deuterium content equal to 157 ppm) and deuterium-depleted water (deuterium content is equal to 3 ppm). Simultaneously with the excitation of luminescence, the Nafion plate was irradiated with ultrasonic pulses, having a duration of 1 µs. The ultrasonic waves were generated with different repetition rates and amplitudes, and irradiated the surface of Nafion in the geometry of grazing or normal incidence. Luminescence regimes were studied when the membrane was irradiated with one ultrasonic wave (one piezoelectric transducer) or two counter-propagating waves (two piezoelectric transducers). It turned out that ultrasonic waves, which fall normal to the membrane interface, do not affect the dynamics of luminescence. At the same time, in the case of ultrasonic irradiation in the grazing incidence geometry, sharp jumps in the luminescence intensity occur, and the behavior of these jumps substantially depends on the mode of irradiation: one or two piezoelectric transducers. This allows for control of the dynamics of luminescence from the polymer surface. In accordance with this model, the possibility of altering the luminescence dynamics is due to the effect of unwinding the polymer fibers from the surface toward the liquid bulk upon soaking. It is important that such unwinding does not occur in deuterium-depleted water, which was confirmed in a direct experiment with dynamic light scattering from polydisperse aqueous suspensions of Nafion nanometer-sized particles; these suspensions were prepared in ordinary water and deuterium-depleted water. Thus, ultrasonic irradiation affects the dynamics of luminescence only when Nafion is swollen in ordinary water; in the case of deuterium-depleted water this effect is missed.

6.
Polymers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458261

RESUMO

When a membrane of Nafion swells in water, polymer fibers "unwind" into the adjoining liquid. They extend to a maximum of about ~300 µm. We explore features of Nafion nanostructure in several electrolyte solutions that occur when the swelling is constrained to a cell of size less than a distance of 300 µm. The constraint forces the polymer fibers to abut against the cell windows. The strongly amphiphilic character of the polymer leads to a shear stress field and the expulsion of water from the complex swollen fiber mixture. An air cavity is formed. It is known that Nafion membrane swelling is highly sensitive to small changes in ion concentration and exposure to shaking. Here we probe such changes further by studying the dynamics of the collapse of the induced cavity. Deionized water and aqueous salt solutions were investigated with Fourier IR spectrometry. The characteristic times of collapse differ for water and for the salt solutions. The dynamics of the cavity collapse differs for solutions prepared by via different dilution protocols. These results are surprising. They may have implications for the standardization of pharmaceutical preparation processes.

7.
Polymers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215601

RESUMO

Photoluminescence from the surface of a Nafion polymer membrane upon swelling in isotonic aqueous solutions and Milli-Q water has been studied. Liquid samples were preliminarily processed by electric pulses with a duration of 1 µs and an amplitude of 0.1 V using an antenna in the form of a flat capacitor; experiments on photoluminescent spectroscopy were carried out 20 min after this treatment. A typical dependence of the luminescence intensity, I, on the swelling time, t, obeys an exponentially decaying function. The characteristic decay time of these functions and the stationary level of luminescence intensity depend on the repetition rate of electrical pulses, and the obtained dependences are well reproduced. It transpired that, at certain pulse repetition rates, the dependence, I(t), is a random function, and there is no reproducibility. Stochastic effects are associated with a random external force of an electromagnetic nature that acts on a polymer membrane during swelling. The source of this random force, in our opinion, is low-frequency pulsations of neutron stars or white dwarfs.

8.
Polymers (Basel) ; 13(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34451175

RESUMO

In photoluminescence spectroscopy experiments, the interaction mode of the polymer membrane Nafion with various amino-acids was studied. The experiments were performed with physiological NaCl solutions prepared in an ordinary water (the deuterium content is 157 ± 1 ppm) and also in deuterium-depleted water (the deuterium content is ≤1 ppm). These studies were motivated by the fact that when Nafion swells in ordinary water, the polymer fibers are effectively "unwound" into the liquid bulk, while in the case of deuterium-depleted water, the unwinding effect is missing. In addition, polymer fibers, unwound into the liquid bulk, are similar to the extracellular matrix (glycocalyx) on the cell membrane surface. It is of interest to clarify the role of unwound fibers in the interaction of amino-acids with the polymer membrane surface. It turned out that the interaction of amino-acids with the membrane surface gives rise to the effects of quenching luminescence from the luminescence centers. We first observed various dynamic regimes arising upon swelling the Nafion membrane in amino-acid suspension with various isotopic content, including triggering effects, which is similar to the processes in the logical gates of computers.

9.
Polymers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947044

RESUMO

The swelling of a polymer membrane NafionTM in deionized water and isotonic NaCl and Ringer's solutions was studied by photoluminescent spectroscopy. According to our previous studies, the surface of this membrane could be considered as a model for a cellular surface. Liquid samples, in which the membrane was soaked, were subjected to preliminary electromagnetic treatment, which consisted of irradiating these samples with electric rectangular pulses of 1 µs duration using platinum electrodes immersed in the liquid. We used a series of pulses with a repetition rate of 11-125 Hz; the pulse amplitudes were equal to 100 and 500 mV. It turned out that at certain pulse repetition rates and their amplitudes, the characteristic swelling time of the polymer membrane significantly differs from the swelling time in untreated (reference) samples. At the same time, there is no effect for certain frequencies/pulse amplitudes. The time interval between electromagnetic treatment and measurements was about 20 min. Thus, in our experiments the effects associated with the long-term relaxation of liquids on the electromagnetic processing are manifested. The effect of long-term relaxation could be associated with a slight change in the geometric characteristics of bubston clusters during electromagnetic treatment.

10.
Polymers (Basel) ; 12(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276553

RESUMO

When Nafion swells in water, colloidal particles are repelled from the polymer surface; this effect is called the formation exclusion zone (EZ), and the EZ size amounts to several hundred microns. However, still no one has investigated the EZ formation in a cell whose dimension is close to the EZ size. It was also shown that, upon swelling in water, Nafion fibers "unwind" into the water bulk. In the case of a cell of limited volume, unwound fibers abut against the cell windows, and water is completely pushed out from the region between the polymer and the cell window, resulting in a cavity appearance. The temporal dynamics of the collapse of this cavity was studied depending on the cell size. It is shown that the cavity formation occurs due to long-range forces between polymer strands. It turned out that this scenario depends on the isotopic composition of the water, ionic additives and water pretreatment. The role of nanobubbles in the formation and collapse of the cavity were analyzed. The results obtained allowed us to conclude that the EZ formation is precisely due to the unwinding of polymer fibers into the liquid bulk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...